Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1101720170210030011
Physical Activity and Nutrition
2017 Volume.21 No. 3 p.11 ~ p.18
Effects of conjugated linoleic acid/n-3 and resistance training on muscle quality and expression of atrophy-related ubiquitin ligases in middle-aged mice with high-fat dietinduced obesity
Oh Seung-Lyul

Lee Sang-Rok
Kim Jeong-Su
Abstract
Purpose: To investigate the effects of conjugated linoleic acid (CLA)/n-3 supplements and resistance exercise training (RT) for 20 weeks on muscle quality and genes related to protein synthesis/degradation in middle-aged mice with high-fat diet (HFD)-induced obesity.

Methods: Nine-month-old C57BL/6 male mice were randomly assigned to five groups: 1) normal diet (C), 2) high-fat diet (H), 3) H+RT (HRT), 4) H+CLA/n-3 (H-CN), and 5) H+RT+CLA/n-3 (H-RTCN). HFD groups were given a diet containing 60% fat for 20 weeks, and exercised groups underwent progressive RT using weighted ladder climbing. The CLA/n-3 mixed diet contained 1% CLA and 1% n-3. Grip strength was assessed, and triceps were removed. RT-PCR was used to analyze transcript levels.

Results: Grip strength of the H group was significantly lower than that of the C group; however, those in the H-CN, H-RT, and H-RTN groups were significantly greater than that in the H group. However, the muscle quality was significantly greater only in the H-RT group compared with the H and H-CN groups. Akt expression decreased in the H-CN, H-RT, and H-RTCN groups compared with those in the C and H groups, whereas mammalian target of rapamycin expression increased in the H, H-CN, H-RT, and H-RTCN groups compared with that in the C group. However, atrogin1 was significantly downregulated in the H-RTCN group compared with that in the H and H-CN groups, and MuRF1 expression was also decreased in the H-RT and H-RTCN groups. Interestingly, atrogin1 and MuRF1 were downregulated in the H-RTCN group compared with that in the H-CN group.

Conclusion: HFD-mediated gene expression involved in protein degradation was attenuated following 20-week RT with CLA/n-3. Furthermore, RT with or without CLA/n-3 improved grip strength and muscle quality in middle-aged mice during HFD. Therefore, RT with CLA/n-3 during HFD may improve muscle strength and quality by suppressing protein degradation.
KEYWORD
Conjugated linoleic acid (CLA), Omega-3 polyunsaturated fatty acid (n-3 PUFAs), Resistance training, Muscle quality, Muscle atrophy
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)